European Spallation Source Update

Project X Collaboration Meeting 25-October-2011

Dave McGinnis

RF Group Leader

ESS Accelerator Division

Overview

- ESS is a <u>long-pulse</u> neutron spallation source
- The target is feed by a superconducting 5 MW proton linac
 - Pulse Length = 2.9 mS
 - Pulse Rate = 14 Hz
 - Beam Current = 50 mA
 - Energy = 2.5 GeV

Collaboration

- ESS is being built by a multi-national collaboration
- Accelerator collaboration
 - NC linac: Ion source (INFN), RFQ
 (CEA), MEBT (Bilbao), DTL (INFN)
 - SC linac: Spoke Cavities (CNRS),
 Elliptical cavities (CEA)
 - High Energy Beam Transport: Aarhus university
 - RF sources: High-power (Uppsala U),
 RF regulation, LLRF (Lund U)
 - Utilities: power, network, cooling, etc (Tekniker)

Location

• The ESS Site is in southern Sweden near the

city of Lund

Cost

Investment: 1478 M€ / ~10y

Operations: 89 M€ / y
Decommissioning. : 346 M€
(Prices per 2008-01-01)

Capital spend

Funding Strategy

- Sweden, Denmark & Norway cover 50% of cost
- The other 14
 member states
 covers the rest, with
 the European
 Investment Bank

Sustainable Energy Concept

Schedule

Schedule

CONCEPTUAL DESIGN REPORT

Main Parameters

Section	Energy _{out}	Beta _{out}	Length	Temp	Freq
Ion source	75 <u>keV</u>	0.01	2.5 m	300 K	_
RFQ	3 MeV	0.08	4.7 m	300 K	352 MHz
MEBT	3 MeV	0.08	2.5 m	300 K	352 MHz
DTL	50 MeV	0.31	19 m	300 K	352 MHz
Spokes, $\beta_{opt} = 0.50$	188 MeV	0.55	58 m	2 K	352 MHz
Ellipticals, $\beta_g = 0.70$	606 MeV	0.79	108 m	2 K	704 MHz
Ellipticals, $\beta_g = 0.90$	2500 MeV	0.96	196 m	2 K	704 MHz
HEBT	2500 MeV	0.96	100 m <u>hor</u>	300 K	_

Superconducting Linac

	Spoke resonators	Low-beta ellipticals	High-beta ellipticals
Gaps or cells per cavity	3	5	5
Cavities per cryomodule	2	4	8
Cryomodules per family	14	16	15

Lattice

RFQ

Drift Tube Linac

- 2.5 MW klystrons (about 2 MW per tank)
- Mechanical design based on tank design developed at CERN
 - accurate positioning and alignment of tube position, metallic gaskets
- Permanent magnet quadrupole
 - allow an improvement of shunt impedance with smaller dimensions of drift tubes)
 - substantial simplification of cabling and logistics
- Power couplers of Linac4 kind
 - planar window
 - wave guide slot.

Drift Tube Linac

- FODO Lattice (focusing period $4\beta I$, O are empty drift tubes for BPMs and steerers) :
 - Space inside DTL for steering and BPM.
 - Optimizations of Shunt impedance by asymmetric cell.
 - Reduced number of PMQ.
 - High gradient of PMQ, from 54 T/m to 71 T/m.
- FFDD Lattice:
 - No space inside DTL.
 - Low gradient of PMQ.

		n Sur		
Tank	No of	Length	Wfinal	Power
	Cells	m	Mev	MW
1	66	7.47	19.20	2.050
2	29	5.75	34.88	2.045
3	24	5.93	50.26	2.072
Total	119	19.15		6.17

Lattice	FODO Const. G	FODO Equip. G	FFDD Const. G	FFDD Equip. G
# PMQ	62	62	119	119
G PMQ [T/m]	54	72 - 31	45.5	51.5 - 22.5
Emit(x,y) increase [%]	16	14	13	15
Emit(z) increase [%]	26	14	23	13
Halo(x,y) increase [%]	59	32	48	30
Halo(z) increase [%]	14	34	41	35

Spoke Cavity Section

- Advantages of Spoke Cavities
 - have multi-gap capabilities (high real-estate gradients)
 - are compact and natural stiff (less sensitive to mechanical perturbation such as vibrations)
 - exhibit high cell to cell coupling (no field flatness required)
 - are less sensitive to HOM or trapped modes (due to the high cell to cell coupling)
 - are not submitted to dipole steering effect (contrary to other low beta cavities like quarter-wave resonators)
 - have a wide β range accessible
 - exhibit a high longitudinal acceptance (accelerating efficiency over a wide β range)

Spoke Cavity Design Constraints

- Operating accelerating field at 8 MV/m
 - peak field limited to 40 MV/m,
 - Limit set by risk of field emission.
- The required peak RF power is about 250 kW
 - for the 50 mA beam intensity
 - corresponding to 10 kW of average power.

Spoke Cavity Design

Overall dimension of the cavity

 B_{pk}/E_{acc}

Cavity β	0.50
Cavity length	$687~\mathrm{mm}$
Cavity diameter	$492~\mathrm{mm}$
R/Q	$394~\Omega$
G	$105~\Omega$
Qo at 4K (with Rres = $10 \text{ n}\Omega$)	1.8 109
Qo at 2K (with Rres = $10 \text{ n}\Omega$)	$9.3\ 109$
E_{pk}/E_{acc}	5.4

e_Z(Z)

3e+006

1e+006

1e+006

-le+006

Tuner Design

8.7 mT/(MV/m)

Elliptical Cavity

- An XFEL production run of 50 cavities
 - At a 20 MV/m gradient is obtained for about 80 to 90% of the cavities
 - 20 MV/m gradient corresponds to 40 MV/m peak surface electric field
- Investigated cavity coupling parameter to trade off cavity efficiency vs
 - Field flatness
 - Aperture
 - Pass-band separation
 - HOM propagation
- Investigated cavity wall angle vs Lorentz detuning

Elliptical Cavity Design

Frequency	[MHz]	704.42
Number of cells		5
Cell to cell coupling	%	1.8
Geometrical beta		0.86
Optimum beta		0.92
Maximum r/Q	Ω	477
E_{pk}/E_{acc}		2.2
B_{pk}/E_{acc}	mT/(MV/m)	4.3
G	Ω	241
π and $4\pi/5$ mode separation	MHz	1.2
Iris diameter	mm	120

KL fixed ends	$\mathrm{Hz/(MV/m)^2}$	-0.36
KL free ends	$Hz/(MV/m)^2$	-8.9
Stiffness	$kN/mm \ 2.59$	
$\Delta \mathrm{f}/\Delta \mathrm{z}$	kHz/mm	197
max VM stress /1mm elongation	MPa	25
KP fixed ends	Hz/mbar	$4,\!85$
KP free ends	Hz/mbar	-150
max VM stress /1bar fixed	MPa	12
max VM stress /1bar free	MPa	15

High beta cavity with titanium helium vessel and integrated piezo tuner.

Elliptical Cavity Power Coupler

- Lots of power!
 - 900kW beam power per coupler (not including overhead for regulation)
 - 36 kW of average power per coupler
- Why not waveguides?
 - Warm window
 - long folded waveguide big at 700 MHz no more simple cryomodule design
 - Lots of material in the clean room
 - Cold window yet to be demonstrated
 - Multi-pactoring large amount of surface area of waveguide made out of niobium
- 1MW coaxial couplers designed and tested at Saclay
 - 1MW peak in full reflection
 - 35 kW average in full reflection
- Cryo-module design issues
 - At 1MW peak, 35kW average, the couplers should not move (much) during cool-down
 - Warm window highly desirable
 - cold windows problematic and not demonstrated at these high power levels implications on the ILC cryo-module configuration

Elliptical Cavity Power Coupler

Table 11: Power coupler specifications.

1 1		
Nominal peak input power	kW	900
Maximum admissible input power	kW	1200
Maximum duty cycle	%	10

-60 -60 -60 -70 -70 -750 80 Frequency (MHz)

E Field I V/n I

1. 1000 e- 400 I

1. 1000 e- 400 I

1. 1256 e- 400 I

1. 1256 e- 400 I

1. 1256 e- 400 I

2. 1256 e- 400 I

3. 1256 e- 400 I

5. 1256 e- 400 I

5. 1256 e- 400 I

7. 1266 e- 400 I

7. 1266 e- 400 I

8. 1276 e- 400 I

9. 1276 e- 400 I

Electric Field in doorknob transition

CEA-Saclay 1MW power Coupler

HOM Coupler

Cryo-modules

- There are three distinct sections of cavities:
 - 28 instances of 352 MHz spoke cavities,
 - housed in 14 cryo-modules (CMS)
 - which hold two cavities and two quadrupoles each
 - 64 instances of 704 MHz low-β elliptical cavities
 - housed in 16 cryo-modules (CML)
 - which hold four cavities and two quadrupoles each
 - 120 instances of 704 MHz high-β elliptical cavities
 - housed in 15 cryo-modules (CMH)
 - which hold eight cavities and two quadrupoles each
- This results in a total of 212 cavities in 45 cryomodules, distributed over a length of 370 m.

Three Possible Configurations

- Continuous cryo-module design
 - Advantages
 - no cold-warm transitions between cavity strings
 - No-need for an external cryo line
 - Disadvantages
 - Harder to repair—long MTTR
 - Lack of warm instrumentation
- Segmented cryo-module design
 - Advantages
 - Easier to repair
 - Warm instrumentation
 - Warm quads
 - Rapid beam based alignment possible
 - Staging possible
 - Disadvantages
 - Higher heat load from ends and external cryo transfer line
 - More space required

- Hybrid cryo-module design
 - Separate modules
 - An independent, external cryogenic distribution line,
 - Interconnecting sleeves between the modules
 - continuous cryogenic temperatures
 - isolation vacuum
 - Advantages
 - lack of the cold-warm transitions between CMs
 - easy transformation of any of the inter-module gaps from cold to warm
 - Modularity replacement of any single cryomodule
 - Disadvantages
 - Added complexity
 - Actual heat load reduction unknown at this time

High Energy Beam Transport

RF Systems

- Average gradient of 7.1MV / meter (2.5GeV within 350 meters)
- Average power delivered to the beam is 5 MW
 - Peak power > 123 MW(4% duty factor).
 - Peak power density > 350kW/meter
- Baseline Design
 - For ultimate flexibility, one klystron-modulator system per cavity
 - Only klystrons considered IOT's are at the limit of the range of the required 352 MHz pulse power
 - Peak klystron power 1.6x beam power
 - 1 dB loss budget from klystron to coupler
 - 30% overhead for low level RF regulation

RF Systems

	Frequency		Max. Power to Beam	Source Output Power	R/Q	Q	Band- width	Average Cavity Spacing
Module	[MHz]	Quantity	[kW]	[<u>kW</u>]	[Ohms]	External	[kHz]	[m]
RFQ	352.21	1	900	1500				
DTL type A	352.21	1	1000	1500				
DTL type B	352.21	2	2000	2800				
Spoke	352.21	28	280	450	500	237,000	1.49	1.99
Elliptical low-β	704.42	64	560	900	300	800,000	0.89	1.67
Elliptical high-β	704.42	120	850	1360	477	750,000	0.94	1.62

Modulators

- Modulator Requirements
 - 3.5 mS flattop
 - 120 kV, 20Amps
 - 14 Hz

e power circuit is simple and reliable. e lectronic active devices are at a medium- ttage level litage ripple on the flat-top is inexistent ry fast rise/fall times are possible rge range of pulse lengths and pulse letition rate available reverse voltage is generated on the	Disadvantages • Large pulse transformers and LC resonant bouncer volume for long pulses • Slow rise and fall times • Reverse voltage on the klystron to demagnetize the pulse transformer limits the duty cycle. • All power components are in oil giving longer time for access and repair. • Reliability in arc protection is dependent on the
rge range of pulse lengths and pulse letition rate available reverse voltage is generated on the	time for access and repair. • Reliability in arc protection is dependent on the
stron. ujority of power parts are in oil, a compact ution can be obtained	reliability of the HV direct switch • High voltage (up-to ~100kV) IGBT assembly technology required
tive demagnetization of the pulse insformer is possible tive droop compensation is intrinsic to the bology tive klystron arc extinction is possible telectronic active devices are at a medium-tage level	The HF voltage ripple at the pulse flat-top. Thermal cycling of semiconductors, operating under hard-switching conditions Two special transformers are required Large pulse transformers for long pulses
electronic active devices are at a medium- tage level miconductor switches and drivers are of ndard commercial types demagnetization circuits are needed. e flat-top voltage (droop) is regulated in sed loop case of klystron arcing, the resonant cuits will be automatically de-O'd	Construction of the high frequency transformers can be challenging H-bridges handle a significant amount of reactive power Longer rise times Soft-switching of the IGBT's in all operating points might be complex. Larger ripple on the flat-top
m n e s	iconductor switches and drivers are of dard commercial types demagnetization circuits are needed. flat-top voltage (droop) is regulated in ed loop

Klystron Gallery

One Klystron / Modulator

Two Klystrons / Modulator

Summary

- ESS will be the most powerful proton linac to be built this decade
- The beam power gives rise to numerous technical challenges
- The schedule is demanding
- We are in the middle of completing our CDR
- We will hope to complete our TDR by the end of 2012
- We can use assistance in a variety of areas
 - Cryomodule design
 - RF system design
 - Modulator design
 - Instrumentation

Sweden is a Nice Place To Live

